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The propagation of acoustic energy from a sound source to the far field is a funda- 
mental problem of acoustics. In this paper the use of computational fluid dynamics 
(CFD) to directly calculate the acoustic field is investigated. The two-dimensional, 
compressible, inviscid flow about an accelerating circular cylinder is used as a model 
problem. The time evolution of the energy transfer from the cylinder surface to the 
fluid, as the cylinder is moved from rest to some non-negligible velocity, is shown. 
Energy is the quantity of interest in the calculations since various components of 
energy have physical meaning. By examining the temporal and spatial characteristics 
of the numerical solution, a distinction can be made between the propagating acoustic 
energy, the convecting energy associated with the entropy change in the fluid, and 
the energy following the body. In the calculations, entropy generation is due to a 
combination of physical mechanisms and numerical error. In the case of propagating 
acoustic waves, entropy generation seems to be a measure of numerical damping 
associated with the discrete flow solver. 

1. Introduction 
The process of rapidly accelerating a body can be a potent noise source. It is natural 

then to consider the transient behaviour of the compressible flow field in this situation. 
Several model problems have been studied analytically for various limiting conditions. 
Ffowcs Williams & Lovely (1977) considered the case of a sphere that is suddenly 
brought into a low Mach number translation in an inviscid, compressible fluid. G. 1. 
Taylor (1942) also considered a sphere which, after an impulsive start, decelerated due 
to the drag induced by the transient pressure field. When the sphere is impulsively 
started to low Mach number, both of these studies found an equipartitioning of 
the energy between the kinetic energy following the body and the radiated acoustic 
energy. Longhorn (1952) found that the work required to start a sphere impulsively 
was twice the amount needed if the sphere was started slowly. The additional work 
required to rapidly accelerate the sphere supplies the energy which radiates as sound 
for this low Mach number problem. 

Although low Mach number problems have been treated, transonic flows are 
difficult to handle analytically with any generality. In this paper, the Euler equations, 
together with the continuity and energy equations, are solved numerically for the two 
dimensional model problem of a circular cylinder accelerating from rest. The Euler 
equations were chosen so that the artificially viscous nature of the discrete numerical 
algorithm may be considered independently from real viscous effects. The Euler 
equations are also useful because they allow strong shock waves and the transport of 
vorticity. 
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2. The accelerating cylinder 
Inspired by the accelerating sphere problem, an investigation of the transient flow 

field around a circular cylinder which has impulsively started is now given. Leftward 
translation at Mach 0.4, approximately the critical Mach number for the cylinder, 
was chosen so that the flow around the cylinder would be transonic without having 
shock waves in the ultimate steady flow. 

2.1. Numerical method 
The Euler equations were chosen as the appropriate set of governing equations since 
they can describe the physical characteristics of both sound and shock waves. The 
inherent numerical viscosity of the discrete solution is suspected of adversely affecting 
the calculated acoustic field. Any viscous phenomenon observed in the present Euler 
calculations must be related to the numerical solution procedure. 

The Euler code developed for this work uses a moving computational grid, hence 
in the computations the body is moving through a stationary fluid. The dependent 
variables are specified in a reference frame fixed to the undisturbed medium. The 
vectorial form of the Euler equations, together with continuity and energy, may be 
written in conservation form as 

+ "x. = 0, 
at 

where 

u = {  i} and + =  U ( $ - - G ) + p {  1) 
PE 

for a reference frame moving with velocity C. Here U is the vector of dependent 
variables - density, momentum, and tot$ energy; 4 is the fluid velocity (u, v); 51 is 
the velocity of the body and grid; and i, j are the unit vectors in the usual coordinate 
directions. In (2.1), the subscript X indicates that the spatial independent variables 
are in the moving frame. The Ui, term in the flux matrix arises from the time 
derivative of the moving coordinates. Since these additional terms will always be 
apparent in the flux matrix when the reference frame is moving, the subscript X will 
not be included in subsequent equations. A moving grid was chosen to simplify the 
treatment for an accelerating body. 

A finite-volume method with multistage time stepping of the Jameson type was used 
to solve the two-dimensional Euler equations (see Jameson, Schmidt & Turkel 1981; 
Schmidt & Jameson 1982; Jameson & Schmidt 1985). The present implementation 
is a cell centred scheme, taken directly from Schmitz & Jameson (1982), which is 
second-order-accurate in space and time. To maintain time accuracy, none of the 
usual steady-state convergence acceleration techniques were used. The semi-discrete 
form of (2.1) can be written 

d 
- (Uijd vij) + Qij - 
dt 

Dij = 0, 

where Qij is the convective flux balance vector for the ijth grid cell and Dij is 
the added dissipative term for the same cell. The dissipation used in this work 
was Jameson's adaptive combination of second and fourth differences (Schmidt & 
Jameson 1982, equation 12-17; Jameson & Schmidt 1985, equation 4.6a). The fourth 
differences provides a low level of third-order background dissipation while the second 
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FIGURE 1. The inner part of the computational grid used for the numerical calculations. 

differences make the scheme behave like a first-order method near shocks. A five- 
stage, Runge-Kutta-like, time-stepping scheme is used for the explicit time integration. 
The dissipative terms were evaluated only in the first two stages to reduce the number 
of computations. Non-reflecting boundary conditions, based on the extrapolation of 
the linearized characteristic variables, are used at the outer computational boundaries 
(Schmidt & Jamesonl982). The surface boundary conditions consist of a statement of 
no flow through the body surface together with a linear extrapolation of the pressure 
onto the surface. Symmetry is assumed between the upper and lower half-planes, 
therefore computations are carried out only in the upper half-plane and symmetry 
boundary conditions are applied on the x-axis. 

The computational grid used for these calculations is a polar grid which models 
half of the flow field and moves with the cylinder. The azimuthal direction is divided 
into 95 cells (do = 0.0331 radians). The radial dimension of the grid cells increases 
linearly up to ten cylinder radii from the centre of the cylinder, after which the radial 
increment remains constant out to forty cylinder radii (the outer boundary of the 
grid). Figure 1 shows the inner part of the computational domain. Notice the grid 
has very fine resolution, especially near the cylinder surface. More details of the Euler 
code used for these calculations is given by Brentner (1990). 

2.2. Description of the starting process 
As the cylinder impulsively starts moving leftward, an expansion wave propagates to 
the right, behind the cylinder, while a compression wave moves to the left, ahead of 
the cylinder. This is shown in the time sequence of density perturbation contours 
plotted in figure 2. The density perturbation, p’, is scaled by rb to account for the 
effect of cylindrical spreading. Here ro is the distance from the point in the field to the 
position where the cylinder centre was located a time t = 0. Notice that the expansion 
moves away from the cylinder more quickly than the compression. This is due to 
the relative motion of the cylinder. The steady flow field near the cylinder surface is 
established by the non-dimensional time t = 20. Note that in all the contour plots, 
the range of contours is limited: therefore the extreme values in the contour plot may 
be greater than the maximum or less than the minimum shown in the legend. 

Immediately after the impulsive start, the pressure on the surface corresponds to 
p = pa + pocoun, which is expected for an impulsive motion. (Here the subscript o 
refers to the undisturbed fluid state and v, is the normal component of the local 

1 
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FIGURE 2. Density perturbation p’ contours for a cylinder impulsively started to Mach 0.4. The 
density perturbation has been scaled by r i  to account for cylindrical spreading. (a) t = 0.11; 
(b)  t = 2.0; (c )  t = 4.0; ( d )  t = 6.0; (e) t = 8.0; (f) t = 10.0. 

surface velocity.) Subsequently a shock forms on the downstream side of the cylinder, 
strengthens, and moves forward. As the shock reaches the top of the cylinder, it 
begins to weaken as it continues to move forward until it finally leaves the cylinder 
surface. Shortly after the shock leaves the cylinder region, the flow field around the 
cylinder approaches that expected for a steady potential flow. The non-circulatory 
steady-state solution for a potential flow is unique. Hence it does not depend upon 
the time history, but the transient flow field and the work required to maintain the 
cylinder velocity during the transient phase vary greatly with the manner in which 
the steady-state flow is achieved. This will be discussed in more detail later. 
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2.3. Energy partition 

With a qualitative understanding of the physics, it is useful to discuss the problem 
more quantitatively. Longhorn (1952) has done this using the total work required 
to accelerate a sphere to low Mach number translation as a quantitative measure. 
The work required to accelerate the cylinder gives a measure of energy input into the 
system. Once in the fluid, the energy can be separated into its various components. 
Energy flux out of a control volume enclosing the cylinder can be used to determine 
the propagation and convection of energy to the far field. The form in which energy 
leaves the control volume can be determined by the time required to exit the volume, 
since the acoustic propagation and fluid convection speeds are disparate. 

Myers (1991) has recently developed an exact energy corollary which is well suited 
for consideration of energy transport in flow fields which may include shock waves 
and vorticity. Myers’ result is a generalization of the concept of acoustic energy, 
which he recognized from a perturbation expansion of the general energy equation 
of fluid mechanics. Since this corollary is exact, it is uniquely appropriate for the 
nonlinear problems under current consideration. For the case of perturbation about 
an undisturbed inviscid fluid, Myers’ corollary can be written as 

d& 
- + v . @ = 0, 
at 

where 
E = p ( A h  + U2 - ToAs 

and 

(2.3) 

In these equations, h is the specific enthalpy, e + p / p ,  and s is the specific entropy. 
The subscript o refers to the value of the quantity in the undisturbed medium and 
A (  ) = ( ) - ( This is a substantially simplified version of Myers’ result since the 
effect of mean flow, viscosity, and heat conduction have been neglected. 

The energy density given in (2.4) contains three components, 

which are the kinetic, potential, and entropy energy densities, respectively. The kinetic 
energy has its normal physical meaning and is the only component of energy in the 
inviscid, incompressible limit. The potential energy is related to the compression of 
the fluid, and the entropy energy is energy corresponding to the increase of entropy 
in the fluid. Notice that each of these energy density terms are defined such that their 
value is zero in the undisturbed fluid and the sum &k + is E in (2.4). A statement 
of energy conservation, written in terms of these components in a reference frame 
moving with velocity 6, is 

Upon integration over a control volume and using the divergence theorem, the global 
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conservation of energy statement can be written in component form as 
a 
at -(& + E,  + E,) + F a  + F', = W 

by defining 

E, = / c ,  dV, 

(2.10) 

(2.1 1) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

Here E k ,  E,, and E,  refer to the total amount of kinetic, potential, and entropy energy 
in the volume at a particular time. Fa and F, are the time-integrated flux of acoustic 
and entropy energy out of the volume (i.e. through the outer boundary of the volume) 
since time t = -00, and W is the total work done by the body on the fluid since 
t = -a. The dot over Fa, F, and W in (2.10) represents time differentiation and is 
used only on boundary integrals. These global measures of energy are also useful for 
quantitatively examining the transfer of energy from the cylinder surface to the fluid 
and ultimately the far field. A more precise definition of these quantities is given by 
Brentner (1990). 

2.4. Energy distribution 
The components of energy discussed in the previous section are now used to develop 
an understanding of the energy transport from the cylinder surface to the near and 
far fields after a Mach 0.4 impulsive start. In figures 3, 4, and 5, the kinetic, potential, 
and entropy energy density contours are plotted in a time sequence. Note that the 
energy density is scaled by ro to account for cylindrical spreading of the energy as it 
propagates away from the cylinder surface. Figure 3 shows that the kinetic energy 
is concentrated both near the cylinder surface and in the acoustic wavefronts. The 
kinetic energy following the cylinder, which is part of the local aerodynamic field, 
distributes itself more or less uniformly around the cylinder. The kinetic energy 
component of the acoustic energy radiates mainly to the left and right of the cylinder, 
with the highest intensity forward of the cylinder in the direction of the motion. The 
shock can be seen in the local kinetic energy distribution as a discontinuity in the 
contours near the cylinder, from t = 4.0 to t = 8.0, in figure 3(c - e ) .  

As in the case of the kinetic energy, the potential energy is found primarily in 
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FIGURE 3. Kinetic energy field ck for a cylinder impulsively started to Mach 0.4 translation. Energy 
has been scaled by ro to account for cylindrical spreading. (a) t = 0.11; (b)  t = 2.0; (c) t = 4.0; 
(d) t = 6.0; (e) t = 8.0; ( f )  t = 10.0. 

the wave fronts and near the cylinder, but unlike kinetic energy, the potential energy 
following the cylinder is found predominantly in the region of maximum fluid velocity. 
The shock is much more apparent in the potential energy density contour sequence 
shown in figure 4. This is to be expected since the potential energy in the fluid 
identifies the presence of compressibility. For a low Mach number flow, the potential 
energy contribution to the local field following the body, i.e. the aerodynamic field, 
would be negligible compared with the kinetic energy. Hence the potential energy 
would be primarily of interest in the acoustic waves. A comparison of figures 3 and 4 
reveals that the energy in the acoustic waves, both the compression and expansion, is 
nearly equally divided between kinetic and potential energy components. 

The contours of entropy energy density, shown in figure 5, reveal an unexpected 
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FIGURE 4. Potential energy field cp for a cylinder impulsively started to Mach 0.4 translation. Energy 
has been scaled by r, to account for cylindrical spreading. (a) t = 0.11; (h) t = 2.0; (c) t = 4.0; 
( d )  t = 6.0; (e) t = 8.0; (f) t = 10.0. 

relationship between the acoustic waves and entropy in the numerical solution. This 
is unexpected since sound propagation is an essentially inviscid, isentropic process. 
Upon closer examination of figure 5, it is evident that the area of the highest level of 
entropy energy remains near the surface of the cylinder for the short time sequence 
shown in the figure. This concentrated region of entropy highlights a vortex generated 
by the strong transient shock which exists shortly after the start of motion. Even 
so, the most striking feature is the undeniable entropy generation by the propagating 
acoustic waves - a phenomenon which must have numerical rather than physical 
origins. This result suggests that the numerically induced errors or damping are 
identified by the entropy energy term. The significance of this finding is that entropy 
energy gives a quantitative local measure of the numerical error which can be used 
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FIGURE 5. Entropy energy field E, for a cylinder impulsively started to Mach 0.4 translation. Energy 
has been scaled by ro to account for cylindrical spreading. (a) t = 0.11; (b) t = 2.0; (c )  t = 4.0; 
( d )  t = 6.0; (e) t = 8.0; ( f )  t = 10.0. 

to judge the acceptability of the acoustic solution. This idea is central to this paper 
and shall be considered in more detail in what follows. 

2.5. Global energy balance 
With a better understanding of how the components of energy are spatially and 
temporarily distributed, it is useful to consider the global energy balance as a function 
of time for a control volume surrounding the cylinder. In the following calculations, 
a circular control surface, with a radius of ten cylinder radii and concentric with 
the cylinder at each time, defines a volume around the cylinder. The total kinetic, 
potential, and entropy energy in the volume along with the acoustic and entropy 
energy flux out of the volume, indicated in (2.10), are computed as a function of time 
for various starting scenarios. 
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FIGURE 6.  Global energy balance time history for a cylinder impulsively started to M = 0.4. 
The control volume radius is R = 10. The total kinetic energy E k ,  potential energy E,, acoustic 
energy flux Fa, entropy energy E,, and entropy energy flux F, are non-dimensionalized by the total 
incompressible kinetic energy, pn R2v2 12. 

In figures 6 and 7, the energy components are added such that the envelope of 
the curves represents the total work input into the fluid by the cylinder. Each of the 
components is non-dimensionalized by the total kinetic energy of the incompressible 
case, pna2v2/2. When the total work is calculated independently, using the computed 
pressure on the cylinder surface, it is nearly indistinguishable from the envelope of 
the energy components. Notice that kinetic energy, potential energy and acoustic 
energy flux are the first three components in figures 6 and 7. They are plotted in this 
order because acoustic energy is counted as kinetic and potential energy while inside 
the control volume and acoustic energy flux as it leaves the control volume. Likewise 
entropy energy and entropy energy flux are plotted together since they correspond to 
the same component of energy either inside or outside of the specified volume. 

When the cylinder is impulsively started to Mach 0.4, most of the work goes 
initially into kinetic and potential energy modes and eventually a significant entropy 
energy component before t = 6.4 at which time acoustic energy begins to leave the 
control volume. This is shown in figure 6. By time t = 36.0, all of the acoustic energy 
has left and the entropy energy begins to leave. The entropy energy convects with the 
fluid velocity rather than the sound speed, thus accounting for the delay in leaving 
the control volume. Acoustic waves have completely left the control volume when 
the acoustic flux contribution reaches its final constant value. Notice in figure 6 that 
there is apparently no increase in the total system entropy after time t = 15, which 
corresponds to the time when nearly all the acoustic waves have left the control 
volume. This is another indication that acoustic energy is being dissipated in the 
discrete numerical calculation. 

Figure 6 also shows that total energy input into the fluid after an impulsive start 
is equally divided between the kinetic and potential energy, which follow the body, 
and the acoustic and entropy energy, which are transported to the far field. This 
finding is consistent with the low Mach number theory for the sphere (Taylor 1942; 
Longhorn 1952; Ffowcs Williams & Lovely 1977) and is an extension of previous 
results since the numerical computations have no restriction to low Mach number. In 
fact the transient flow field is transonic, vorticity is generated, and there is significant 
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FIGURE 7. Global energy balance time history for a control volume with radius R = 10. The total 
kinetic energy Ek, potential energy E,, acoustic energy flux Fa, entropy energy E,, and entropy energy 
flux F8 are non-dimensionalized by the total incompressible kinetic energy, pnR2u2/2, where v is the 
steady-state velocity Mach 0.4. (a) impulsive start; (b) acceleration = 1/5; (c) acceleration = 2/25; 
( d )  acceleration = 1/25; (e) acceleration = 2/125; c f )  acceleration = 1/125. 

potential energy even in the ultimate steady aerodynamic field. Based on figure 6, the 
equipartition of energy is no longer simply a balance between the kinetic energy in 
the local field and the acoustic energy propagating to the far field as in the low Mach 
number case. After the impulsive start, half of the input energy remains near the 
cylinder and the other half goes to the far field. The local energy field is comprised 
of both kinetic and potential energy while both acoustic propagation and entropy 
convection account for the energy transport to the far field in the more general case 
of compressible flow. 

Figure 7 (b - f )  shows the energy transfer for a cylinder accelerated at various 
non-impulsive, constant non-dimensional acceleration rates. An examination of 
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figure 7(a - f )  reveals that the total work input at steady-state (the sum of all 
the energy components at large time) declines significantly with reduced acceleration 
even though the steady-state flow field is the Mach 0.4 potential flow solution for each 
case. As the rate of acceleration is decreased, the production of entropy and acoustic 
energies declines until for the case of very low acceleration in figure 7cf), the energy 
input into the fluid nearly corresponds to the energy in the local field. Only a very 
small amount of acoustic energy is generated in the process. Also note in the figure 
that the entropy generated is greatly reduced when the acceleration rate is decreased. 

3. Sources of entropy 
One nagging question must still be addressed - How much of the entropy energy re- 

sults from numerical error and how much is real? For the impulsively started cylinder, 
both physical and numerical entropy generation mechanisms must be present. The 
physical source of entropy in this inviscid calculation is the strong shock generated 
during the transient startup period. The exact mechanism responsible for the numer- 
ical dissipation of the acoustic waves is not fully understood. This is clearly a serious 
problem since the desired numerical calculation should mimic the isentropic nature 
of the physical situation. There is some hope that this will not be an insurmountable 
problem, however, since for lower acceleration rates there is very little energy in the 
entropy component even though there is still a significant acoustic energy component. 
(See figure 7c for example.) Hence even if acoustic energy is dissipated, it may be 
at negligible levels. In the remainder of this paper, an investigation will be made 
to determine the source of the non-physical origins of the entropy. Specifically, the 
effect of the explicitly added artificial viscosity and the role of grid resolution will be 
studied separately. 

3.1. EfSect of artiJicial viscosity 
The artificial viscosity added for numerical stability seems to be an obvious generator 
of unwanted entropy. The form of the artificial dissipation used in the computations 
is that given by Schmidt & Jameson (1982) and Jameson & Schmidt (1985). It 
is composed of a combination of second and fourth differences, with the fourth 
differences providing background dissipation and the second differences adaptively 
turned on in regions of sufficiently high gradients. The purpose of the second 
differences in the dissipation is to eliminate oscillations around shock waves, but the 
present form of the scheme does not necessarily distinguish between shock waves 
and acoustic waves. To examine the amount of entropy generation by the artificial 
viscosity terms, the magnitude of the dissipation terms were increased independently. 
In figure 8(a), the effect of changing the damping coefficients on the entropy energy is 
shown. Even when the second-differences term is tripled or the fourth-differences term 
is increased by an order of magnitude, the effect on entropy generation is minimal. 

3.2. EfSect of grid resolution 
The grid resolution is certainly related to the numerical dissipation observed in the 
calculations. In fact, the grid probably does not sufficiently resolve the high-frequency 
component of the acoustic waves generated during the impulsive start. The high level 
of entropy energy observed in the impulsive case may be an indication of this. To 
study this effect, three additional computational grids are considered. The grid used 
in the previous calculations and shown in figure 1 is designated here as Grid 1. Grid 2 
has half the resolution of Grid 1 in both the r- and &directions while Grids 3 and 4 
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FIGURE 8. A comparison of the entropy energy E, in the control volume for various levels of the 
artificial viscosity and different grids. The nominal values of the coefficients of the second and 
fourth differences in the viscosity are kz = 0.25 and k4 = 0.003, respectively. Grid 1 is the nominal 
grid. (a) Effect of artificial viscosity; (b) effect of grid resolution. 

both have significantly finer resolution in the r-direction. The constant radial spacing 
of Grid 4 starts at a much smaller r than the other grids, giving it the finest radial 
resolution. Grid 3 has twice the azimuthal resolution of Grid 1 and Grid 4. The 
ratio between the temporal and spatial discretization sizes (CFL number) was held 
constant for all grids by changing the time step to account for changes in the grid 
size. 

The grid resolution seems directly related to the entropy level, as shown in fig- 
ure 8(b). The coarser grid has a high level of entropy corresponding to a loss in 
acoustic energy while the entropy of the finer grids is significantly reduced. Upon 
closer examination of the solution, the amount of entropy computed using the fine 
grids seems to be near that which was physically generated by the shock immediately 
after startup. Figure 9 compares the entropy energy distribution for the impulsively 
started cylinder at time t = 8.0. Notice that both Grids 3 and 4 have significantly 
less entropy energy associated with the acoustic waves than the original grid. These 
calculations agree with the prevailing view that very high accuracy is required for 
the prediction of acoustics. Thus grid resolution and the order of accuracy of the 
numerical algorithm are of primary importance in direct computation of acoustics 
with CFD methods. 

Even though grid refinement improved the calculations, a polar grid is not be 
the best choice since the azimuthal arclength of the cells grows linearly with r ,  
Other types of grids which maintain the grid cell size uniformly throughout the 
computational domain are more suitable for acoustics since they minimize the effects 
of grid stretching. Perhaps adaptive, unstructured grids can be used to actually 
increase the grid density only where waves exist in the field. Higher-order-accuracy 
algorithms are also needed to reduce the demand for extremely fine grids. Finally, 
the local energy field seems to be much less sensitive to the grid resolution than the 
field away from the body - an observation which explains why stretched grids do not 
seem to cause problems in aerodynamic calculations. 
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FIGURE 9. A comparison of the entropy energy E,  distribution for various grids at t = 8.0. The 
cylinder was impulsively started in Mach 0.4 translational motion. (a) Grid 1 ; (b) grid 2 ;  (c) grid 3 ;  
( d )  grid 4. 

4. Conclusions 
The aim of this paper is twofold: (i) to understand the nonlinear, transient energy 

transfer from the surface of an accelerating cylinder to the far field; and (ii) to 
better understand the capabilities and limitations of present day CFD methodology 
as applied to acoustic problems. Both of these aims have been addressed through the 
numerical study of the circular cylinder model problem. 

The transition from rest to a Mach 0.4 translation is somewhat more complicated 
than in the low Mach number problems studied previously. When the cylinder is 
accelerated rapidly, a shock forms in the compressible fluid, generating entropy and 
vorticity in the early stages of the motion. As the shock disappears, the vorticity 
convects away from the cylinder and the steady flow around the cylinder becomes 
essentially potential. It is somewhat surprising then that an equipartition of energy 
exists for this compressible problem in the same way as a low Mach number case. 
Nevertheless, the present calculations show that half of the energy input during an 
impulsive start follows the cylinder and the other half is transported to the far field. 

Finally, the separation of energy into kinetic, potential, and entropy energy com- 
ponents is useful in understanding both the physics of the problem and the effect 
of the numerical damping. The entropy term is especially useful because it gives a 
quantitative measure for comparing the effect of algorithms and grids on the un- 
steady solution. This use of energy is apparently new. For the second-order-accurate, 
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finite-volume, Euler solutions computed for this paper, the discretization errors re- 
lated to the grid resolution appear to be the primary source of numerically generated 
entropy. If the grid is too coarse, acoustic energy is transferred to entropy energy as 
it propagates. The role of the explicitly added artificial viscosity has a small effect on 
the time-dependent energy solution. 

This research was carried out under the supervision of Professor J. E. Ffowcs 
Williams as part of the author’s doctoral work. 

R E F E R E N C E S  
BRENTNER, K. S. 1990 The sound of moving bodies. Ph.D. dissertation, University of Cambridge. 
FFOWCS WILLIAMS, J. E. & LOVELY, D. J. 1977 An approximate method for evaluating the sound of 

JAMESON, A. & SCHMIDT, W. 1985 Some recent developments in numerical methods for transonic 

JAMESON, A,, SCHMIDT, W. & TURKEL, E. 1981 Numerical solution of the euler equations by finite 

LONGHORN, A. L. 1952 The unsteady, subsonic motion of a sphere in a compressible inviscid fluid. 

MYERS, M. K. 1991 Transport of energy by disturbances in arbitrary steady flows. J .  Fluid Mech. 

SCHMIDT, W. & JAMESON, A. 1982 Recent developments in finite-volume time-dependent techniques 
for two and three dimensional transonic flows. Von Karman Lecture Series 1982-04. 

TAYLOR, G. I. 1942 The motion of a body in water when subjected to a sudden impulse. In Scientific 
Papers of G. I .  Taylor (ed. G. K. Batchelor), vol. 3, pp. 306-308. Cambridge University Press. 

impulsively accelerated bodies. J .  Sound Vib. 50, 333-343. 

flows. Comp. Meth. Appi. Mech. Engng 51, 467-493. 

volume methods using Runge-Kutta time-stepping schemes. AIAA Paper 81-1259. 

Q. J .  Mech. Appl. M a t h  V, 64-81. 

226, 383-400. 

10 FLM 254 




